4.7 Article

Surfactant-assisted tungsten sulfide mesoporous sphere for hydrogen production

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 47, 期 100, 页码 41984-41993

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2021.08.233

关键词

Tungsten sulfide; Cetyltrimethylammonium bromide; Hydrogen evolution reaction

资金

  1. MHRD RUSA
  2. UGC-SAP
  3. DST FIST
  4. PURSE

向作者/读者索取更多资源

This study successfully synthesized pristine and cationic surfactant assisted tungsten sulfide for hydrogen evolution reaction. The cationic surfactant assisted tungsten sulfide showed high catalytic activity and stability, making it suitable for large-scale applications.
Highly proficient, long-lasting non-noble-metal-supported electrocatalysts for hydrogen evolution reaction are important for hydrogen energy production through alkaline electrolyte. In transition metal dichalcogenides, tungsten sulfide is one of the popular materials and is used in a wide variety of applications. In this work, pristine and cationic surfactant assisted tungsten sulfide were successfully synthesized via simple hydrothermal method in alkaline electrolyte for hydrogen evolution reaction. X-ray diffraction confirmed tungsten sulfide rhombohedral structure formation with high index plane (003). Scanning electron microscopy explored tungsten sulfide nanosheet-assembled mesoporous sphere morphology. Tungsten sulfide and cationic surfactant assisted tungsten sulfide overpotential values were found to be 141 and 102 mV at 10 mA/cm(2) from linear sweep voltammetry curves. The obtained Tafel slope of tungsten sulfide and cationic surfactant assisted tungsten sulfide were 26.9 and 21.4 mV/dec, respectively. The solution and charge transfer resistance of the prepared materials were obtained from Nyquist plot and found to be 1.7 and 1.4 Omega, and 53.6 and 32 Omega, respectively. The specific surface area, pore diameter, and volume were analyzed by BrunauereEmmetteTeller method and obtained values for surface area, pore size, and volume of cetyltrimethylammonium bromide assisted tungsten sulfide were 65.05 m(2)/g, 3.502 nm, and 0.067 cc/g, respectively. The obtained result suggested that 0.1 M cationic surfactant assisted tungsten sulfide showed high catalytic activity with minimum overpotential. Long-term durability studies also suggested that the optimized surfactant-assisted tungsten sulfide had excellent stability over a prolong time of 16 h without any decay. However, the stability of the material exhibited only 90% retention which will improve in our near future works by using carbonbased materials. Hence, carbon-based materials exhibited outstanding chemical stability and offer large surface area, which significantly improves the hydrogen evolution reaction activity and suggests to be used in large-scale applications. (c) 2021 Hydrogen Energy Publications LLC.Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据