4.7 Article

Preparation of polybenzimidazole/ZIF-8 and polybenzimidazole/UiO-66 composite membranes with enhanced proton conductivity

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 47, 期 45, 页码 19690-19701

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2021.11.045

关键词

Polybenzimidazole; Metal-organic-frameworks; Proton conductivity; Composite membranes; Hydrogen energy

资金

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [219M333]

向作者/读者索取更多资源

This study fabricated composite membranes consisting of metal-organic frameworks (MOFs) and polybenzimidazole (PBI) polymer, showing a significant improvement in proton conductivity while sacrificing permeability and mechanical stability.
Metal-organic frameworks (MOFs) are considered emerging materials as they further improve the various properties of polymer membranes used in energy applications, ranging from electrochemical storage and purification of hydrogen to proton exchange membrane fuel cells. Herein, we fabricate composite membranes consisting of polybenzimidazole (PBI) polymer as a matrix and MOFs as filler. Synthesis of ZIF-8 and UiO-66 MOFs are conducted through a typical solvothermal method, and composite membranes are fabricated with different MOF compositions (e.g., 2.5, 5.0, 7.5, and 10.0 wt %). We report a significant improvement in proton conductivity compared with the pristine PBI; for example, more than a three-fold increase in conductivity is observed when the PBI-UiO66 (10.0 wt %) and PBI-ZIF8 (10.0 wt %) membranes are tested at 160 degrees C. Proton conductivities of the composite membranes vary between 0.225 and 0.316 S cm(-1) at 140 and 160 degrees C. For the comparison, pure PBI exhibits 0.060 S cm(-1) at 140 degrees C and 0.083 S cm(-1) at 160 degrees C. However, we also report a decrease in permeability and mechanical stability with the composite membranes. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据