4.7 Article

Flow and heat transfer in a rotating channel with impingement cooling and film extraction

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2021.121751

关键词

Heat transfer; Flow field; Rotation; Impingement cooling; Film extraction

向作者/读者索取更多资源

This study focuses on the rotational effects in an impingement cooling channel with film extraction, showing that channel rotation increases heat transfer in the low radius region on the pressure side. The non-uniform mass flow rate distribution leads to deterioration of heat transfer.
Impingement cooling is applied on the turbine blade leading edge which suffers the highest heat transfer and needs priority protection. The current work focuses on the rotational effects in an impingement cooling channel with film extraction, in which heat transfer is obtained with experiment whereas the flow field is predicted by numerical simulation. The dimensionless spacing of jet-to-jet (s/D-j) and jet-to-target surface (l/D-j ) are both 3. The jet Reynolds number and the channel orientation (the angle between jet direction and rotating orientation) are 5,0 0 0 and 135 degrees, respectively. The jet rotation number changes from 0 to 0.24, and the maximum jet buoyancy number reaches 0.57. The results show that the heat transfer on the suction side is better than that on the pressure side where the recirculation region generates. The heat transfer deteriorates from high to low radius due to the non-uniform mass flow rate distribution. Once the channel rotates, the non-uniformity of mass flow rate increases because the vortex occurs in the supply channel, resulting in the heat transfer increase by 140% in the low radius region on the pressure side. On the pressure side in the impingement channel, the rotation-induced secondary flow breaks the recirculation region, promoting the heat transfer. On the suction side, however, the secondary flow and rotation-driven jet deflection decrease the heat transfer. Besides, the jet buoyancy number is inappropriate to describe the combined influences of jet rotation number and wall-to-fluid temperature ratio at high jet buoyancy number in current experimental conditions. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据