4.7 Article

A mixed variational framework for higher-order unified gradient elasticity

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijengsci.2021.103603

关键词

Mixed variational principle; Unified gradient elasticity; Carbon nanotubes; Size-dependent shear modulus; Chirality

向作者/读者索取更多资源

The proposed higher-order unified gradient elasticity theory effectively characterizes the nanoscopic response of advanced nano-materials, as demonstrated by its application to study the torsional behavior of elastic nano-bars and determine the shear modulus of nano-sized bars in closed-form analytical formula. Additionally, a practical approach to calibrate characteristic lengths is introduced.
The higher-order unified gradient elasticity theory is conceived in a mixed variational framework based on suitable functional space of kinetic test fields. The intrinsic form of the differential and boundary conditions of equilibrium along with the constitutive laws is consistently established. Various forms of the gradient elasticity theory, in the sense of stress or strain gradient models, can be retrieved as particular cases of the introduced generalized elasticity theory. The proposed stationary variational principle can effectively realize the nanoscopic structural effects while being exempt of restrictions typical of the nonlocal gradient elasticity model. The well-posed generalized gradient elasticity theory is invoked to study the mechanics of torsion and the torsional behavior of elastic nano-bars is analytically examined. The closed-form analytical formulae of the size-dependent shear modulus of nano-sized bar is determined and efficiently applied to reconstruct the shear modulus of SWCNTs with dissimilar chirality in comparison with the numerical simulation data. A practical approach to calibrate the characteristic lengths associated with the higher-order unified gradient elasticity theory is introduced. Numerical results associated with the torsion of higher-order unified gradient elastic bars are demonstrated and compared with the counterpart size-dependent elasticity theories. The conceived generalized gradient elasticity theory can beneficially characterize the nanoscopic response of advanced nano-materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据