4.7 Article

Gamma radiation-induced synthesis of a novel chitosan/silver/Mn-Mg ferrite nanocomposite and its impact on cadmium accumulation and translocation in brassica plant growth

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2021.11.197

关键词

Gamma radiation; Chitosan nanocomposites; Spinel ferrite; Cadmium translocation; Antioxidant

向作者/读者索取更多资源

The novel chitosan/silver/Mn0.5Mg0.5Fe2O4 nanocomposite synthesized with gamma irradiation assistant showed promising results in reducing the negative effects of Cd stress on cabbage plants by decreasing Cd content in leaves, enhancing antioxidant and non-antioxidant enzyme activities, and promoting plant growth.
Herein, a novel chitosan/silver/Mn0.5Mg0.5Fe2O4 (Cs/Ag/MnMgFe2O4) nanocomposite was synthesized with gamma irradiation assistant. The prepared Cs/Ag/MnMgFe2O4 nanocomposite was characterized via EDX, XRD, SEM, UV-vis spectroscopy. To evaluate the effects of soak low and high-dose nanocomposite on physiological parameters, photosynthetic pigments, antioxidant and non-antioxidant enzymes of cabbage under Cd stress, a factorial experiment was conducted based on CRD with five replications. The Cd stress decreased the morphological characteristics and photosynthetic pigments while increasing cabbage's antioxidant and non-antioxidant enzymes. The application of low and high-dose of nanocomposite decreased Cd content in leaves by about 42.86%, 60.48%, and the root by approximately 18.72%, 28.72%, respectively, and translocation factors and tolerance index, H2O2, O2, and malondialdehyde. In contrast, the application of high of the nanocomposite increased the values of SPAD chlorophyll about 27.50%, stomatal conductance about 87.18%, net photosynthetic rate about 44.90%, intercellular CO2 concentration about 32.00%, and transpiration rate about 85.20%, as compared to Cd stress. Furthermore, the application of low and high-dose Cs/Ag/MnMgFe2O4 nanocomposite enhances the antioxidant and non-antioxidant enzymes of the cabbage plant compared to Cd stress. Generally, it was conducted that Cs/Ag/MnMgFe2O4 nanocomposite can be used as a proper tool for increasing cabbage plants under Cd stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据