4.5 Article

Hydrolytic stability of polyurethane/polyhydroxyurethane hybrid adhesives

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijadhadh.2021.102950

关键词

A; novel adhesives; D; aging; D; mechanical properties of adhesives; Water immersion; Hybrid polyurethane; polyhydroxyurethane; Non-isocyanate polyurethanes

向作者/读者索取更多资源

Polyurethane/polyhydroxyurethane (PU/PHU) hybrid materials show potential as alternatives to PU adhesives with good mechanical and adhesive properties, but are susceptible to water uptake leading to potential bond failure. After water immersion, cohesive strength of PU/PHU increases while adhesive strength decreases, requiring careful application design for optimal usage.
Polyurethane/polyhydroxyurethane (PU/PHU) hybrid materials are potential alternatives to PU materials in adhesive use, when the user needs to be protected from free di-isocyanates. PU/PHU materials have promising mechanical and adhesive properties, but they are susceptible to a higher water uptake than corresponding PU materials. In adhesive use, water and temperature are typically responsible for environmental ageing, which can cause unexpected bond failure. Therefore, the effect of water uptake on mechanical and adhesive strength is crucial. In this study, the water uptake of PU/PHU at various temperatures was studied and the contribution of absorbed water to material properties was investigated. The highly crosslinked amorphous PU/PHU was synthesized from a multifunctional polyethyleneimine (PEI) and a cyclic carbonate terminated prepolymer made from a hexamethylene di-isocyanate (HDI) based isocyanate prepolymer. High water uptake of PU/PHU originated from the hydrophilic amine used as well as the pendant hydroxyl groups in the hydroxy urethane. After the high initial water absorption, a quasi-equilibrium was reached at room temperature. Water immersion at elevated temperature introduced a second water absorption step which eventually caused PU/PHU to become a water-soluble gel. Considering the potential applications of PU/PHU, the cohesive strength had increased after water immersion cycles, but the adhesive strength was irreversibly reduced resulting in total bond failure after five water immersion cycles. In contrast, longer storage at dry elevated temperature improved the cohesive and adhesive strength. Thus, a careful design of the application is required for PU/PHU adhesives to fully utilize the advantage of the high lap shear strength in dry condition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据