4.3 Article Proceedings Paper

Transition From Glow Microdischarge to Arc Discharge With Thermionic Cathode in Argon at Atmospheric Pressure

期刊

IEEE TRANSACTIONS ON PLASMA SCIENCE
卷 44, 期 11, 页码 2536-2544

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPS.2016.2557587

关键词

Arc discharge; atmospheric-pressure plasma; discharge simulations; microdischarge

向作者/读者索取更多资源

A 1-D model for the simulation of transition from glow microdischarge to arc discharge with a thermionic cathode was built using COMSOL Multiphysics. The extended fluid model was coupled with the gas heating equation for the self-consistent simulation of discharge at atmospheric pressure in a wide range of currents. Both the secondary electron emission and the thermionic emission were taken into account simultaneously to allow for the transition. In order to properly account for thermionic emission, cathode heating was considered-heat flux equation was solved in a 1-D solid domain with heat fluxes on the cathode surface from the discharge domain used as boundary conditions. A thorough set of plasma-chemical reactions with account of molecular ions of argon was used. Using the external circuit allowed for obtaining stable solutions in a wide range of currents. By changing ballast resistance, the classical current-voltage characteristic of direct current discharge with transition from glow to arc was obtained. The distributions of such discharge parameters as charged and excited particle densities and fluxes, electron mean energies and temperatures, gas temperature, and electric potential were obtained for microdischarge, arc discharge, and transitional state. Time-dependent simulations allowed for obtaining the dynamics of discharge formation. It is shown that after the breakdown, the cathode is heated by the discharge current for a time of tens of milliseconds, and then, transition to stable arc discharge with thermionic cathode takes place.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据