4.7 Article

Discovering candidate genes related to flowering time in the spring panel of Camelina sativa

期刊

INDUSTRIAL CROPS AND PRODUCTS
卷 173, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.indcrop.2021.114104

关键词

Camelina sativa; GWAS; Flowering time; Genomic selection; SNP

资金

  1. United States Department of Agriculture-Agricultural Research Service (USDA-ARS) [2020-21410-007-00D]
  2. National Institute of Food and Agriculture (NIFA) [2016-67009-25639]

向作者/读者索取更多资源

Camelina sativa is a promising oilseed and industrial crop that benefits sustainable food, feed, and fuel industries. Early flowering is critical for local adaptation and maximizing yield in Camelina sativa. The study identified significant trait-associated markers through GWAS and demonstrated the potential for genetic improvements in flower development and timing in camelina.
Camelina sativa is a promising oilseed and industrial crop that benefits sustainable food, feed and fuel industries. Early flowering is critical for local adaptation as well as maximizing yield in Camelina sativa. Even though the preliminary data indicated wide variation in flowering time in the spring camelina germplasm, our understanding of underlying genes and their roles in regulating flower development is still limited. The current study combined genotypic data and flowering time from the spring panel, followed by genome-wide association study (GWAS) and whole-genome prediction to identify significant trait-associated markers and evaluate the predictive capability of the entire marker set. The analysis of phenotypic data showed significant genotypic and environmental effects on flowering time. A high heritability of 0.893 in flowering time suggests effectiveness of breeding early flowering camelina varieties. The GWAS analysis identified 20 significant trait-associated single nucleotide polymorphisms (SNPs) that colocalized within/or near a variety of transcription factors (e.g. SUPPRESSOR of PHYA-1/SPA1, BES1-INTERACTING MYC-LIKE 1/BIM1) or protein families containing specific functional domains (e.g. CCCH zinc finger protein family and B3-DNA binding domain containing protein family). These transcription factors were known to interact with key regulatory genes in the four major pathways (i.e. photoperiod, autonomous, vernalization and gibberellic acid pathways) to cooperatively regulate floral transition in arabidopsis. Whole-genome prediction showed a low-to-moderate predictive ability (0.559) to improve early flowering trait in camelina. This study is the first step for future in-depth exploration and genetic improvements of flower development and timing in camelina for breeding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据