4.6 Article

Fabrication and Characterization of Cross-Linked Phenyl-Acrylate-Based Ion Exchange Membranes and Performance in a Direct Urea Fuel Cell

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 60, 期 41, 页码 14856-14867

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.iecr.1c02798

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0021215]
  2. U.S. Department of Energy (DOE) [DE-SC0021215] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

The study focuses on the preparation of cross-linked ion exchange membranes with high mechanical toughness for direct fuel cells, using different monomers and a cross-linker. The experimental results demonstrate that these membranes exhibit superior performance compared to commercial membranes.
Ion exchange membranes (IEMs) are crucial for direct fuel cells, including direct methanol and direct urea fuel cells (DUFCs). While commercially available IEMs (e.g., FAA-3-50) show decent power density in direct fuel cells, they experience considerable methanol or urea crossover, reducing device performance and motivating design of IEMs that suppress fuel crossover. Here, we prepare cross-linked IEMs with high mechanical toughness utilizing a cross-linker (methylenebis(acrylamide)), hydrophobic monomer (phenyl acrylate (PA) or phenyl methacrylate (PMA)), and charged monomer (2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) for cation exchange or methacroylcholine chloride (MACC) for anion exchange). To validate these membranes in a fuel cell application, we perform DUFC experiments utilizing a PA/MACC AEM and observe good power density compared to FAA-3-50. To understand the role of urea crossover in DUFC performance, permeabilities of both membranes to urea are measured by diffusion cells with in situ ATR-FTIR spectroscopy, where our PA/MACC exhibited lower urea permeability than FAA-3-50.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据