4.8 Review

Modeling and Advanced Control of Dual-Active-Bridge DC-DC Converters: A Review

期刊

IEEE TRANSACTIONS ON POWER ELECTRONICS
卷 37, 期 2, 页码 1524-1547

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2021.3108157

关键词

Mathematical model; Reduced order systems; Integrated circuit modeling; Predictive models; Microgrids; Load modeling; Atmospheric modeling; DC-DC; dual active bridge (DAB); reduced-order model; generalized average model; discrete-time model; feedback control; feedforward control; model predictive control

资金

  1. National Key Research and Development Program of China [2018YFB0904100]
  2. National Natural Science Foundation of China [52007168]

向作者/读者索取更多资源

This article classifies, describes, and critically compares different modeling techniques and control methods for dual-active-bridge (DAB) dc-dc converters. It provides recommendations for suitable modeling methods and evaluates the performance of various control methods through frequency response analysis. Practical control issues for DAB are also reviewed. The article is accompanied by PLECS simulation files for the reviewed control methods.
This article classifies, describes, and critically compares different modeling techniques and control methods for dual-active-bridge (DAB) dc-dc converters and provides explicit guidance about the DAB controller design to practicing engineers and researchers. First, available modeling methods for DAB including reduced-order model, generalized average model, and discrete-time model are classified and quantitatively compared using simulation results. Based on this comparison, recommendations for suitable DAB modeling method are given. Then, we comprehensively review the available control methods including feedback-only control, linearization control, feedforward plus feedback, disturbance-observer-based control, feedforward current control, model predictive current control, sliding mode control, and moving discretized control set model predictive control. Frequency responses of the closed-loop control-to-output and output impedance are selected as the metrics of the ability in voltage tracking and the load disturbance rejection performance. The frequency response plots of the closed-loop control-to-output transfer function and output impedance of each control method are theoretically derived or swept using simulation software PLECS and MATLAB. Based on these plots, remarks on each control method are drawn. Some practical control issues for DAB including dead-time effect, phase drift, and dc magnetic flux bias are also reviewed. This article is accompanied by PLECS simulation files of the reviewed control methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据