4.8 Article

SiC-Based 5-kV Universal Modular Soft-Switching Solid-State Transformer (M-S4T) for Medium-Voltage DC Microgrids and Distribution Grids

期刊

IEEE TRANSACTIONS ON POWER ELECTRONICS
卷 36, 期 10, 页码 11326-11343

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2021.3066908

关键词

Zero voltage switching; Silicon carbide; Topology; Capacitors; Zero current switching; Silicon; Electromagnetic interference; Current-source converter (CSC); dc transformer (DCT); high-frequency link (HFL); input-series output-parallel (ISOP); isolated bidirectional dc-dc converter (IBdc); medium-voltage direct-current network; power electronic transformer (PET); zero-current switching (ZCS); zero-voltage switching (ZVS)

资金

  1. Power America Institute
  2. Center for Distributed Energy, Georgia Institute of Technology

向作者/读者索取更多资源

This article introduces a 5-kV SiC-based universal modular solid-state transformer (SST), which can interface either an LVac or LVdc grid with an MVdc grid in single-stage power conversion with high efficiency and robustness. The proposed SST module uses 3.3-kV SiC MOSFETs and diodes, and can serve as a building block in series or parallel for higher voltage higher power systems. The topology of each module is based on the soft-switching solid-state transformer (S4T) with reduced conduction loss and electromagnetic interference, offering high efficiency with full-range zero-voltage switching for main devices and zero-current switching for auxiliary devices.
Medium-voltage dc (MVdc) grids are attractive for electric aircraft and ship power systems, battery energy storage system (BESS), fast charging electric vehicle (EV), etc. Such EV or BESS applications need isolated bidirectional MVdc to low-voltage dc (LVdc) or LVac converters. However, the existing Si-based solutions cannot fulfill the requirements of a high-efficiency and robust converter for MVdc grids. This article presents a 5-kV SiC-based universal modular solid-state transformer (SST). This universal current-source SST can interface either an LVac or LVdc grid with an MVdc grid in single-stage power conversion, while the conventional dual-active bridge (DAB) converter needs an additional inverter. The proposed SST module using 3.3-kV SiC MOSFETs and diodes is bidirectional and can serve as a building block in series or parallel for higher voltage higher power systems. The topology of each module is based on the soft-switching solid-state transformer (S4T) with reduced conduction loss, which features reduced electromagnetic interference electromagnetic interference (EMI) through controlled dv/dt, and high efficiency with full-range zero-voltage switching for main devices and zero-current switching for auxiliary devices. Operation principle of the modular S4T (M-S4T), capacitor voltage balancing control between the cascaded modules, design of components including a medium-voltage (MV) medium-frequency transformer (MFT) to realize a 50-kVA, 5-kV dc to 600 V dc or 480 V ac M-S4T are presented. Importantly, the MV MFT prototype achieves very low leakage inductance (0.13%) and 15-kV insulation with coaxial cables and nanocrystalline cores. The proposed universal modular SST is compared against the DAB solution and verified with dc-dc and dc-ac simulation and 4-kV experimental results. Significantly, the MV experimental results of a modular dc transformer with each module at MVdc are rarely covered in the literature and reported for the first time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据