4.4 Article

Ultrahigh-Field, High-Efficiency Superconducting Machines for Offshore Wind Turbines

期刊

IEEE TRANSACTIONS ON MAGNETICS
卷 58, 期 2, 页码 -

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMAG.2021.3094163

关键词

Generators; Wind turbines; High-temperature superconductors; Iron; Superconducting coils; Heating systems; Topology; High efficiency; high temperature superconductor; low temperature superconductor; superconducting (SC); ultrahigh field; wind turbines

向作者/读者索取更多资源

Offshore wind turbines are crucial for increasing the use of green energy in the electricity market. Superconducting wind turbine generators offer higher air-gap flux density and power density. This article proposes a hybrid design approach to achieve high field and high efficiency offshore wind turbines.
Offshore wind turbines are the key enabling technology to increase the green energy penetration in the electricity market. Increasing the power generation per tower and reducing the levelized cost of energy are the two significant problems faced by wind turbine manufacturers. Traditional turbine manufacturers use rare-earth permanent magnets (PMs) to increase the air-gap flux density and maximize the machine outer diameter (OD) to increase the torque output. Since the air-gap flux density achievable with available PM is limited, increasing the power output of a traditional generator invariably leads to a significant increase in the volume and mass on top of the turbine tower and associated manufacturing, transportation, and installation costs. Superconducting (SC) wind turbine generators offer 5 to 10 times the air-gap flux density of a PM generator, and a corresponding increase in specific power and power density. Previous MW scale SC wind turbines designs used heavy back iron in the design, iron saturation limits the achievable air-gap flux density in the designs and resulted in bulky generators and moderate efficiency. In this article, a hybrid design approach is proposed to reach an ultrahigh field (5 to 10 times of PM air-gap flux density) and high efficiency (>98%) SC wind turbine for offshore wind turbine. An additional stray field limitation is introduced for safety concerns and shielding techniques are explored. Electromagnetic, mechanical, and cooling designs are provided to support the feasibility of proposed SC wind turbines. A nacelle integration inside a commercially available 6 MW wind turbine is shown to demonstrate the size comparison of the proposed generator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据