4.4 Article

Graphene Field-Effect Transistors for In Vitro and Ex Vivo Recordings

期刊

IEEE TRANSACTIONS ON NANOTECHNOLOGY
卷 16, 期 1, 页码 140-147

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNANO.2016.2639028

关键词

Bioelectronics; ex vivo biosensor; electrophysiology; graphene; GFETs; in vitro biosensor; solution gating

资金

  1. Helmholtz-CAS JRG funding
  2. Graphene Flagship [604391]

向作者/读者索取更多资源

Recording extracellular potentials from electrogenic cells (especially neurons) is the hallmark destination of modern bioelectronics. While fabrication of flexible and biocompatible in vivo devices via silicon technology is complicated and time-consuming, graphene field-effect transistors (GFETs), instead, can easily be fabricated on flexible and biocompatible substrates. In this work, we compare GFETs fabricated on rigid (SiO2/Si and sapphire) and flexible (polyimide) substrates. The GFETs, fabricated on the polyimide, exhibit extremely large transconductance values, up to 11 mS. V-1, and mobility over 1750 cm(2) . V-1 .s(-1). In vitro recordings from cardiomyocyte-like cell culture are performed by GFETs on a rigid transparent substrate (sapphire). Via multichannel measurement, we are able to record and analyze both: difference in action potentials as well as their spatial propagation over the chip. Furthermore, the controllably flexible polyimide-on-steel (PIonS) substrates are able to ex vivo record electrical signals from primary embryonic rat heart tissue. Considering the flexibility of PIonS chips, together with the excellent sensitivity, we open up a new road into graphene-based in vivo biosensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据