4.7 Article

An Efficient Integral Equation Method for Full-Wave Analysis of Inhomogeneous Electromagnetic Surfaces With Connected Conductors

期刊

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
卷 70, 期 7, 页码 5647-5658

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TAP.2022.3145482

关键词

Conductors; Integral equations; Mathematical models; Dielectrics; Boundary conditions; Electromagnetics; Sparse matrices; Domain decomposition method; electromagnetic (EM) surfaces; fast solvers; metasurfaces; reduced-order modeling; reflectarrays; surface integral equations (SIEs)

资金

  1. Natural Sciences and Engineering Research Council (NSERC)

向作者/读者索取更多资源

This article presents a generalized macromodeling approach to simulate complex electromagnetic surfaces, generating macromodels of unit cells by applying the equivalence principle. A new method is proposed to ensure the continuity of surface currents, with accuracy validated through comparisons with commercial solvers for different EM surfaces.
In this article, a generalized macromodeling approach is presented to simulate complex electromagnetic (EM) surfaces consisting of unit cells with connected conductors. Macromodels of each unit cell are produced by applying the equivalence principle on fictitious surfaces encapsulating them. Unit cells often consist of multiple dielectric layers and conductor traces, featuring multiscale structures. Challenges arise when a current-carrying conductor trace traverses the fictitious surface. Hence, a new method based on half Rao-Wilton-Glisson basis functions is proposed to accurately ensure the continuity of the surface currents and avoid singularities at the intersections. The accuracy of the proposed approach is validated by comparing the results with commercial solvers for different EM surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据