4.7 Article

Inkjet-Printed, Nanofiber-Based Soft Capacitive Pressure Sensors for Tactile Sensing

期刊

IEEE SENSORS JOURNAL
卷 21, 期 23, 页码 26286-26293

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSEN.2021.3085128

关键词

Sensors; Dielectrics; Electrodes; Sensor phenomena and characterization; Fabrication; Capacitive sensors; Resistance; Polydimethylsiloxane; capacitive pressure sensor; inkjet printing; printed electronics; soft electronics; polyvinyl alcohol

资金

  1. Academy of Finland [299087, 310618, 320019]
  2. Walter Ahlstrom Foundation
  3. Finnish Science Foundation for Technology and Economics
  4. Academy of Finland (AKA) [310618, 320019, 310618, 320019] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

The development of soft electronics is crucial for AI applications that involve direct human interaction. The low-cost method of fabricating polydimethylsiloxane based soft electronics by inkjet printing enables the creation of capacitive pressure sensors with improved sensitivity and long-term repeatability. This scalable solution offers high-sensitivity printed sensors for e-skin and human-machine interfaces.
The development of soft electronics is critical to the realization of artificial intelligence that comes into direct contact with humans, such as wearable devices, and robotics. Furthermore, rapid prototyping and inexpensive processes are essential for the development of these applications. We demonstrate here an additive, low-cost method for fabricating polydimethylsiloxane based soft electronics by inkjet printing. Herein, a novel approach using a water-soluble polyvinyl alcohol layer as the substrate, inexpensive, fully digital fabrication of capacitive pressure sensors is enabled by sandwiching mesh-like conductive layers and microstructured dielectric in a straightforward, convenient manner. These sensors exhibit improved sensitivity (4 MPa-1) at low pressures (< 1 kPa) in contrast to sensors with a flat elastomer dielectric and can still detect large pressures around 50 kPa, having excellent long-term repeatability over 2000 cycles, without significant hysteresis (<= 8.5 %). The tactile sensing ability of the fabricated devices was demonstrated in a practical application. Moreover, sensor characteristics are easily adjustable, simply by changing printing parameters or tuning the ink solution. The proposed approach provides scalable solution for fabricating high-sensitivity printed sensors for e-skin and human-machine interfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据