4.7 Article

Origin of the Diffusion-Related Optical Degradation of 1.3 μm Inas QD-LDs Epitaxially Grown on Silicon Substrate

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTQE.2021.3091960

关键词

Quantum-dots; semiconductor lasers; reliability; diffusion processes; beryllium

资金

  1. INTERNET OF THINGS: SVILUPPI METODOLOGICI, TECNOLOGICI E APPLICATIVI project
  2. U.S. Department of Energy Advanced Research Project Agency [DE-AR001039]

向作者/读者索取更多资源

This paper investigates the origin of the optical degradation of InAs quantum dot laser diodes epitaxially grown on silicon. The temperature acceleration of the degradation process is quantitatively evaluated through constant-current stress experiments at different temperatures. The results suggest that the degradation is related to the recombination-enhanced diffusion of Be, the p-type dopant, or the lattice defects limiting Be diffusion. These findings provide new insights on the microscopic origin of the gradual optical degradation of quantum-dot lasers and have wide application in silicon photonics.
This paper investigates the origin of the diffusion process responsible for the optical degradation of InAs quantum dot (QD) laser diodes epitaxially grown on silicon. By means of a series of constant-current stress experiments carried out at different temperatures, we were able to quantitatively evaluate the temperature acceleration of the degradation process. In addition, the presence of temperature thresholds above which the degradation rate drastically increases was ascribed to the onset of a recombination-enhanced degradation process, which is favored at high temperatures. Finally, the comparison of the experimentally determined diffusion coefficients with prior scientific reports suggests that degradation is related to the recombination-enhanced diffusion of Be, used here as p-type dopant, or of the lattice defects limiting Be diffusion. The original results of this work provide new insight on the microscopic origin of the gradual optical degradation of quantum-dot lasers, which will find wide application in silicon photonics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据