4.6 Article

Effects of lake-groundwater interaction on the thermal regime of a sub-alpine headwater stream

期刊

HYDROLOGICAL PROCESSES
卷 36, 期 2, 页码 -

出版社

WILEY
DOI: 10.1002/hyp.14501

关键词

alpine hydrology; Canadian Rockies; energy balance; groundwater-stream interaction; headwater spring; seasonal lake; stream temperature

资金

  1. Alberta Innovates -Water Innovation Program
  2. Canada First Research Excellence Fund Global Water Futures
  3. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

Stream thermal regimes are crucial for freshwater habitat stability. This study explores the factors controlling the thermal regime of a mountain headwater stream and the surrounding groundwater processes, providing insights for adapting to stream temperature changes under a warming climate.
Stream thermal regimes are critical to the stability of freshwater habitats. There is growing concern that climate change will result in stream warming due to rising air temperatures, decreased shading in forested areas due to wildfires, and changes in streamflow. Groundwater plays an important role in controlling stream temperatures in mountain headwaters, where it makes up a considerable portion of discharge. This study investigated the controls on the thermal regime of a headwater stream, and the surrounding groundwater processes, in a catchment on the eastern slopes of the Canadian Rocky Mountains. Groundwater discharge to the headwater spring is partially sourced by a seasonal lake. Spring, stream and lake temperature, water level, discharge and chemistry data were used to build a conceptual model of the system. Meteorological data was used to set up a stream temperature model. This study presents a unique example of an indirectly lake-headed stream, that is, a lake that only has transient subsurface hydrologic connections to the stream and no surface connections. The interaction of groundwater and lake water, and the subsurface connectivity between the lake and the headwater spring determine the resulting stream temperature. Radiation dominated the non-advective fluxes in the stream energy balance. Sensible and latent heat fluxes play a secondary role, but their effects generally cancel out. During snowfall events, the latent heat associated with melting of direct snowfall onto the water surface was responsible for rapid stream cooling. An increase in advective inputs from groundwater and hillslope pathways did not result in observed cooling of stream water during rainfall events. The results from this study will assist water resource and fisheries managers in adapting to stream temperature changes under a warming climate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据