4.7 Article

Prevalence of white matter pathways coming into a single white matter voxel orientation: The bottleneck issue in tractography

期刊

HUMAN BRAIN MAPPING
卷 43, 期 4, 页码 1196-1213

出版社

WILEY
DOI: 10.1002/hbm.25697

关键词

bottleneck; crossing fibers; fiber pathways; tractography; tractometry; white matter

资金

  1. Institutional Research Chair in Neuroinformatics
  2. NSERC
  3. Dutch Research Council (NWO) [17331]
  4. Sir Henry Wellcome Fellowship [215944/Z/19/Z]
  5. National Center for Research Resources [UL1 RR024975-01]
  6. ViSE/VICTR [VR3029]
  7. National Institutes of Health [T32EB001628, R01EB017230]
  8. Wellcome Trust [215944/Z/19/Z] Funding Source: Wellcome Trust

向作者/读者索取更多资源

Characterizing and understanding the limitations of diffusion MRI fiber tractography is crucial for accurately mapping human brain connections. The study aims to quantify bottleneck regions in white matter, finding that over 50-70% of fixels in the brain exhibit bottlenecks. This phenomenon affects all types of white matter fibers and underscores the need for a paradigm shift in the tractography process.
Characterizing and understanding the limitations of diffusion MRI fiber tractography is a prerequisite for methodological advances and innovations which will allow these techniques to accurately map the connections of the human brain. The so-called crossing fiber problem has received tremendous attention and has continuously triggered the community to develop novel approaches for disentangling distinctly oriented fiber populations. Perhaps an even greater challenge occurs when multiple white matter bundles converge within a single voxel, or throughout a single brain region, and share the same parallel orientation, before diverging and continuing towards their final cortical or sub-cortical terminations. These so-called bottleneck regions contribute to the ill-posed nature of the tractography process, and lead to both false positive and false negative estimated connections. Yet, as opposed to the extent of crossing fibers, a thorough characterization of bottleneck regions has not been performed. The aim of this study is to quantify the prevalence of bottleneck regions. To do this, we use diffusion tractography to segment known white matter bundles of the brain, and assign each bundle to voxels they pass through and to specific orientations within those voxels (i.e. fixels). We demonstrate that bottlenecks occur in greater than 50-70% of fixels in the white matter of the human brain. We find that all projection, association, and commissural fibers contribute to, and are affected by, this phenomenon, and show that even regions traditionally considered single fiber voxels often contain multiple fiber populations. Together, this study shows that a majority of white matter presents bottlenecks for tractography which may lead to incorrect or erroneous estimates of brain connectivity or quantitative tractography (i.e., tractometry), and underscores the need for a paradigm shift in the process of tractography and bundle segmentation for studying the fiber pathways of the human brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据