4.4 Article Proceedings Paper

Improved BER Performance With Rotated Head Array and 2-D Detector in Two-Dimensional Magnetic Recording

期刊

IEEE TRANSACTIONS ON MAGNETICS
卷 52, 期 7, 页码 -

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMAG.2015.2513381

关键词

Multi-track detection; rotated head array (RHA); two-dimensional magnetic recording (TDMR)

向作者/读者索取更多资源

Two-dimensional magnetic recording is a promising candidate to further extend the areal density above 1 Tb/in(2) density while using a conventional writer and media. During the writing process, a shingled writer is usually used to write narrow tracks by overlapping previous tracks, which brings severe intertrack interference (ITI), fewer grains per channel bit and corresponding lower signal-tonoise ratio (SNR). As a consequence, for the current shingled magnetic recording system, a normally oriented head array (NHA) is usually implemented to detect a single track by using 2-D signal processing to mitigate the ITI and media noise. Then, a rotated head array (RHA) has been found to effectively avoid the ITI and regain the lost down-track resolution using signal processing. Correspondingly, in this paper, the RHA is investigated to simultaneously detect three tracks with 1-D and joint pattern-dependent noise-predictive (PDNP) Bahl-Cocke-Jelinek-Raviv (BCJR) detectors. Simulation indicates that, for the perfect writing at the 6 nm Voronoi grains, if the 1-D PDNP BCJR detector is implemented, the RHA combined with a designed 2-D equalizer producing multiple equalized waveforms can provide 16% density gains compared with the NHA with a 2-D equalizer and 1-D target at the target bit error rate (BER) of 10(-2). If the joint PDNP BCJR detector is implemented, the RHA can provide 25% density gain compared with that for the NHA with the same detection algorithm at the target BER of 10(-2). With respect to error correction, a longer codeword length of binary low density parity check code can be used for decoding of the multi-track detection compared with that for the single-track detection, which provides an extra SNR gain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据