4.8 Article

Complex range shifts among forest functional types under the contemporary warming

期刊

GLOBAL CHANGE BIOLOGY
卷 28, 期 4, 页码 1477-1492

出版社

WILEY
DOI: 10.1111/gcb.16001

关键词

climate change; distribution shift; functional trait; functional type; Juvenile-adult difference; leading edge; trailing edge

资金

  1. National Institute for Environmental Studies

向作者/读者索取更多资源

The study found that juvenile tree species prefer cooler sites with high variation, partially explained by differences in seed mass. Complex range shifts at functional trait (FT) level have implications for climate change mitigation and adaptation.
The direction and magnitude of species distribution shifts tend to differ among species and functional types (FTs). Quantifying functional trait variation and species interactions will improve our understanding of the complex mechanisms that govern ecosystem dynamics and their responses to climate change. Here, we analyzed differences in the juvenile and adult temperature ranges of Japanese tree species at the mean, colder edge, and warmer edge of their distributions to reveal how functional traits affect interactions between different FT groups (e.g., deciduous and evergreen broad-leaved trees), using linear models and permutation tests. Overall, juveniles preferred cooler sites, but with high variation. The variation among species was partly explained by the difference in seed mass where species with lighter seeds tend to colonize colder sites. On the other hand, the distribution range of FTs showed complex behavior at the ecotones of different FTs. Specifically, in three of eight ecotones, nonparallel range shifts between FTs were detected, which includes cold shifting in deciduous broad-leaved FT where a warm shift by subalpine FT happened, and cold shifting in subtropical FT where warm shifts by either the deciduous broad-leaved or the evergreen broad-leaved FTs happened. Our results suggest that past warming has caused a general cold shift at species level, whereas different mechanisms, such as light seeds disperse farther in distribution's colder edge and heavy seeds (e.g., evergreen broad-leaved) compete better in warmer edge, create nonparallel responses of FT distribution ranges leading to the observed homogenization at several ecotones among FTs. These complex range shifts at FT level have crucial implications for climate change mitigation and adaptation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据