4.7 Article

Changes in topsoil organic carbon content in the Swiss leman region cropland from 1993 to present. Insights from large scale on-farm study

期刊

GEODERMA
卷 400, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.geoderma.2021.115125

关键词

Soil organic carbon; Cropland; Soil organic carbon change rate; On-farm monitoring

资金

  1. Vaud and Geneva agriculture departments

向作者/读者索取更多资源

The study reveals a significant decrease in SOC content in western Switzerland's cropland topsoil, with most areas showing a linear increase in SOC content change rates. This trend is attributed to Swiss agri-environmental schemes and the adoption of minimum tillage, conservation agriculture, and multi-species cover crops.
Increasing cropland topsoil organic carbon (SOC) content is a key goal for soil improving quality and adaptating soils to climate change. Moreover, the short term potential of climate mitigation by carbon sequestration is mostly attributed to increasing topsoil SOC content (Balesdent and Arrouays, 1999; Chambers et al., 2016; Minasny et al., 2017; Balesdent et al., 2018). However, the possibility to increase SOC content is highly disputed in current literature which is mostly based on field experiments. We quantified the on-farm SOC content deficit and SOC content change rate of cropland topsoil (0-20 cm) from western Switzerland using the data bases of Geneva and Vaud cantons containing more than 30,000 topsoil analyses, performed every ten years on every cultivated field of the region since 1993. SOC deficit was estimated as the amount of SOC necessary to reach the 0.1 SOC:clay ratio considered as the minimum required SOC amount for acceptable soil quality. Cropland topsoils of the Vaud and Geneva cantons displayed a 20% and 70% SOC content deficit, respectively. In both cantons, the range of observed rates of change in SOC content from 1993 to present was very large, from -30 to +30 parts per thousand per year, with a median value of 0. However, the time trends showed a highly significant linear increase of rates from -5 parts per thousand to +6 parts per thousand per year on average, in 1995 and 2015, respectively, with no change in SOC content reached by 2005-2007. These trends were attributed to the Swiss agri-environmental schemes applied at the end of 20th century, namely mandatory cover crops and minimum rotations of 4 crops. Further, SOC content increase was accordant with the continuing adoption of minimum tillage, conservation agriculture and multi-species intense cover crops. These findings oppose to those obtained in Swiss long-term experiments, which emphasizes the need to use onfarm information when adressing agriculture policy, climate mitigation or soil quality management issues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据