4.7 Article

A multi-enhancer RET regulatory code is disrupted in Hirschsprung disease

期刊

GENOME RESEARCH
卷 31, 期 12, 页码 2199-2208

出版社

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/gr.275667.121

关键词

-

资金

  1. aNational Institutes of Health (Eunice Kennedy Shriver National Institute of Child Health and Human Development) [HD028088]

向作者/读者索取更多资源

The study identified 22 HSCR-associated variants in candidate RET CREs, with seven having differential allele-specific enhancer activity and four affecting RET gene expression. This suggests that common sequence variants in at least 10 RET enhancers affect HSCR risk, with seven showing experimental evidence of affecting RET gene expression, revealing an extensive regulatory code modulating disease risk at a single gene.
The major genetic risk factors for Hirschsprung disease (HSCR) are three common polymorphisms within cis-regulatory elements (CREs) of the receptor tyrosine kinase gene RET, which reduce its expression during enteric nervous system (ENS) development. These risk variants attenuate binding of the transcription factors RARB, GATA2, and SOX10 to their cognate CREs, reduce RET gene expression, and dysregulate other ENS and HSCR genes in the RET-EDNRB gene regulatory network (GRN). Here, we use siRNA, ChIP, and CRISPR-Cas9 deletion analyses in the SK-N-SH cell line to ask how many additional HSCR-associated risk variants reside in RET CREs that affect its gene expression. We identify 22 HSCR-associated variants in candidate RET CREs, of which seven have differential allele-specific in vitro enhancer activity, and four of these seven affect RET gene expression; of these, two enhancers are bound by the transcription factor PAX3. We also show that deleting multiple variant-containing enhancers leads to synergistic effects on RET gene expression. These, coupled with our prior results, show that common sequence variants in at least 10 RET enhancers affect HSCR risk, seven with experimental evidence of affecting RET gene expression, extending the known RET-EDNRB GRN to reveal an extensive regulatory code modulating disease risk at a single gene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据