4.6 Article

Transcriptome and chromatin landscape changes associated with trastuzumab resistance in HER2+breast cancer cells

期刊

GENE
卷 799, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.gene.2021.145808

关键词

breast cancer; Herceptin; trastuzumab; drug resistance; FoxJ3; Sox2; ATAC-seq; differentially expressed genes

资金

  1. National Institute of General Medical Science [1RO1GM105898]
  2. National Institutes of Health [GM61331]

向作者/读者索取更多资源

The study revealed increased chromatin accessibility within PPP1R1B in trastuzumab-resistant breast cancer cells, associated with its t-Darpp transcript increase, pointing to a possible mechanism for its activation in resistant cells.
We set out to uncover transcriptome and chromatin landscape changes that occur in HER2 + breast cancer (BC) cells upon acquiring resistance to trastuzumab. RNA-seq analysis was applied to two independently-derived BC cell lines with acquired resistance to trastuzumab (SKBr3.HerR and BT-474HerR) and their parental drugsensitive cell lines (SKBr3 and BT-474). Chromatin landscape analysis indicated that the most significant increase in accessibility in resistant cells occurs in PPP1R1B within a segment spanning introns 1b through intron 3. Footprint analysis of this segment revealed that FoxJ3 (within intron 2) and Pou5A1/Sox2 (within inton 3) transcription factor motifs are protected in resistant cells. Overall, 344 shared genes were upregulated in both resistant cell lines relative to their parental counterparts and 453 shared genes were downregulated in both resistant cell lines relative to their parental counterparts. In resistant cells, genes associated with autophagy and mitochondria organization are upregulated and genes associated with ribosome assembly and cell cycle are downregulated relative to parental cells. The five top upregulated genes in drug-resistant breast cancer cells are APOD, AZGP1, ETV5, ALPP, and PPP1R1B. This is the first report of increased chromatin accessibility within PPP1R1B associated with its t-Darpp transcript increase, and points to a possible mechanism for its activation in trastuzumab-resistant cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据