4.6 Article

Therapeutic perceptions in antisense RNA-mediated gene regulation for COVID-19

期刊

GENE
卷 800, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.gene.2021.145839

关键词

SARS-CoV-2; Antisense RNA; Therapeutic

资金

  1. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
  2. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
  3. Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG)

向作者/读者索取更多资源

COVID-19 originated in Wuhan, China, and it is believed that effective vaccines and a global vaccination program are necessary to return to normalcy. Research identified specific target markers in SARS-CoV-2 RNA for potential vaccine development based on antisense RNA, highlighting the need for further understanding of antisense RNA mechanisms.
COVID-19 was first reported in Wuhan, China, in December 2019. It is widely accepted that the world will not return to its prepandemic normality until safe and effective vaccines are available and a global vaccination program has been successfully implemented. Antisense RNAs are single-stranded RNAs that occur naturally or are synthetic and enable hybridizing and protein-blocking translation. Therefore, the main objective of this study was to identify target markers in the RNA of the severe acute respiratory syndrome coronavirus, or SARS-CoV-2, with a length between 21 and 28 bases that could enable the development of vaccines and therapies based on antisense RNA. We used a search algorithm in C language to compare 3159 complete nucleotide sequences from SARS-CoV-2 downloaded from the repository of the National Center for Biotechnology Information. The objective was to verify whether any common sequences were present in all 3159 strains of SARS-CoV-2. In the first of three datasets (SARS-CoV-2), the algorithm found two sequences each of 21 nucleotides (Sequence 1: CTACTGAAGCCTTTGAAAAAA; Sequence 2: TGTGGTTATACCTACTAAAAA). In the second dataset (SARS-CoV) and third dataset (MERS-CoV), no sequences of size N between 21 and 28 were found. Sequence 1 and Sequence 2 were input into BLAST (R) >> blastn and recognized by the platform. The gene identified by the sequences found by the algorithm was the ORF1ab region of SARS-CoV-2. Considerable progress in antisense RNA research has been made in recent years, and great achievements in the application of antisense RNA have been observed. However, many mechanisms of antisense RNA are not yet understood. Thus, more time and money must be invested into the development of therapies for gene regulation mediated by antisense RNA to treat COVID-19 as no effective therapy for this disease has yet been found.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据