4.7 Article

Hydrogen isotopes (delta H-2) of polyunsaturated fatty acids track bioconversion by zooplankton

期刊

FUNCTIONAL ECOLOGY
卷 36, 期 3, 页码 538-549

出版社

WILEY
DOI: 10.1111/1365-2435.13981

关键词

bioconversion; compound-specific stable isotopes; deuterium; ecophysiology; eutrophication; polyunsaturated fatty acids; trophic ecology; zooplankton

类别

资金

  1. Austrian Science Fund [I-3855]
  2. German Research Foundation (DFG) [MA 5005/8-1]

向作者/读者索取更多资源

This study investigates the metabolism of LC-PUFA in freshwater zooplankton and finds that zooplankton can compensate for low dietary EPA supply by activating LC-PUFA biosynthesis. It also shows that herbivorous zooplankton play a crucial role in upgrading FA for higher trophic levels during periods of low dietary EPA supply.
1. Organisms at the base of aquatic food webs synthesize essential nutrients, such as omega-3 polyunsaturated fatty acids (n-3 PUFA), which are transferred to consumers at higher trophic levels. Many consumers, requiring n-3 long-chain (LC) PUFA, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have limited ability to biosynthesize them from the essential dietary precursor alpha-linolenic acid (ALA) and thus rely on dietary provision of LC-PUFA. 2. We investigated LC-PUFA metabolism in freshwater zooplankton using stable hydrogen isotopes (delta H-2) of fatty acids as tracers. We conducted feeding experiments with the freshwater keystone grazer Daphnia to quantify changes in the delta H-2 value of body FA in response to the FA composition of their food and the delta H-2 value of the ambient water. 3. The isotopic composition of LC-PUFA changed in Daphnia, depending on the integration of H-2 from ambient water during de novo synthesis or bioconversion from dietary precursors, allowing us to distinguish dietary from bioconverted EPA in body tissue. We tested the applicability of these laboratory findings in a field setting by analysing delta H-2 values of PUFA in primary producers and consumers in eutrophic ponds to track EPA sources of zooplankton. 4. Multilinear regression models that included conversion of ALA to EPA correlated better with zooplankton delta H-2 EpA than seston delta H-2(EPA) at low dietary EPA supply. 5. This study provides evidence that zooplankton can compensate for low dietary EPA supply by activating LC-PUFA biosynthesis and shows that herbivorous zooplankton play a crucial role in upgrading FA for higher trophic levels during low dietary EPA supply.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据