4.7 Article

Power law scaling relationships link canopy structural complexity and height across forest types

期刊

FUNCTIONAL ECOLOGY
卷 36, 期 3, 页码 713-726

出版社

WILEY
DOI: 10.1111/1365-2435.13983

关键词

canopy structural complexity; forest complexity; forest structure; plant functional type; power law; scaling

类别

资金

  1. National Science Foundation's Division of Emerging Frontiers [1550657, 1550650, 1550639]
  2. NASA Postdoctoral Program Fellowship
  3. Direct For Biological Sciences
  4. Emerging Frontiers [1550657, 1550639] Funding Source: National Science Foundation
  5. Emerging Frontiers
  6. Direct For Biological Sciences [1550650] Funding Source: National Science Foundation

向作者/读者索取更多资源

Forest canopy structural complexity (CSC) increases as a power law of forest height, with differences observed in evergreen needleleaf forests compared to other forest types. The relationship between forest height and CSC has broad implications for modeling, scaling, and mapping forest structural attributes.
1. Forest canopy structural complexity (CSC), an emergent ecosystem property, plays a critical role in controlling ecosystem productivity, resource acquisition and resource use-efficiency; yet is poorly characterized across broad geographic scales and is difficult to upscale from the plot to the landscape. 2. Here, we show that the relationship between canopy height and CSC can be explained using power laws by analysing lidar-derived CSC data from 17 temperate forest sites spanning over 17 degrees of latitude. Across three plant functional types (deciduous broadleaf, evergreen needleleaf and mixed forests), CSC increases as an approximate power law of forest height. In evergreen needleleaf forests, increases in canopy height do not result in increases in complexity to the same magnitude as in other forest types. 3. We attribute differences in the slope of height:complexity relationships among forest types to: (a) the limited diversity of crown architectures among evergreen conifer trees relative to broadleaf species; (b) differences in how vertical forest layering develops with height; and (c) competitive exclusion by needleleaf species. We show support for these potential mechanisms with an analysis of 4,324 individual trees from across 18 National Ecological Observatory Network sites showing that crown geometry-to-tree height relationships differ consistently between broadleaf and needleleaf species. 4. Power law relationships between forest height and CSC have broad implications for modelling, scaling and mapping forest structural attributes. Our results suggest that forest research and management should consider the nonlinearity in scaling between forest height and CSC and that the nature of these relationships may differ by forest type.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据