4.7 Article

Ecological Adaptive Cruise Controller for Plug-In Hybrid Electric Vehicles Using Nonlinear Model Predictive Control

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2015.2462843

关键词

Ecological adaptive cruise controller; intelligent transportation systems; advanced driving assistant systems; non-linear model predictive controller

资金

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada
  2. Toyota Technical Centre
  3. Ontario Centres of Excellence

向作者/读者索取更多资源

Plug-in hybrid electric vehicles (PHEVs) are promising options for future transportation. Having two sources of energy enables them to offer better fuel economy and fewer emissions. Significant research has been done to take advantage of future route information to enhance vehicle performance. In this paper, an ecological adaptive cruise controller (Eco-ACC) is used to improve both fuel economy and safety of the Toyota Prius Plug-in Hybrid. Recently, an emerging trend in the research has been to improve the adaptive cruise controller. However, the majority of research to date has focused on driving safety, and only rare reports in the literature substantiate the applicability of such systems for PHEVs. Here, we demonstrate that using an Eco-ACC system can simultaneously improve total energy costs and vehicle safety. The developed controller is equipped with an onboard sensor that captures upcoming trip data to optimally adjust the speed of PHEVs. The nonlinear model predictive control technique (NMPC) is used to optimally control vehicle speed. To prepare the NMPC controller for real-time applications, a fast and efficient control-oriented model is developed. The authenticity of the model is validated using a high-fidelity Autonomie-based model. To evaluate the designed controller, the global optimum solution for cruise control problem is found using Pontryagin's minimum principle (PMP). To explore the efficacy of the controller, PID and linear MPC controllers are also applied to the same problem. Simulations are conducted for different driving scenarios such as driving over a hill and car following. These simulations demonstrate that NMPC improves the total energy cost up to 19%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据