4.7 Article

Mechanistic studies of carbocycles on elemental mercury adsorption on carbonaceous surface

期刊

FUEL
卷 309, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2021.122101

关键词

DFT; Mercury; Multiple-membered carbocycle; Carbonaceous surface; Adsorption

资金

  1. National Natural Science Foundation of China [51806140, 51876124]
  2. Natural Science Foundation of Shanghai [21ZR1434300]

向作者/读者索取更多资源

The study utilized density functional theory to investigate the effect of multiple-membered carbocycles on the adsorption of elemental mercury on carbon surfaces. Results showed that the distribution of C-C bond lengths and adsorption energy were influenced by the presence of MMC, leading to different trends in adsorption categories.
Multiple-membered carbocycle (MMC) is a potential material to modify activated carbon for mercury removal in coal-fired power plants due to its unique effect on carrier properties. Density functional theory (DFT) method was utilized for the first time to reveal the effect of MMC on elemental mercury adsorption on the carbonaceous surface. The calculation results indicate that the distribution of C-C bond lengths presents two different trends due to the influence of MMC. Then, all mercury-containing models are divided into three categories based on the mercury position and adsorption energy. The adsorption energy can reach the maximum value only when the mercury is co-adsorbed by substrate surface and MMC, such as Model C(B), D(B) and I(T&B). The Mulliken charge population implies that the four-membered carbocycle is capable to repel electrons, which can be regarded as an effective tool for charge rearrangement. In addition, the magnitude of charge transfer directly determines the adsorption energy, which is reflected in the order of three categories. The partial density of state (PDOS) and HOMO-LUMO energy gap analyses show that the adsorption energy of the second and third categories increases as the number of carbon atoms on MMC increases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据