4.7 Article

Three-dimensional porous reduced graphene oxide decorated with carbon quantum dots and platinum nanoparticles for highly selective determination of azo dye compound tartrazine

期刊

FOOD AND CHEMICAL TOXICOLOGY
卷 158, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fct.2021.112698

关键词

Azo dye; Tartrazine; Carbon quantum dots; Three-dimensional graphene oxide; Screen-printed carbon electrode; Electrochemical sensor

资金

  1. Scientific Research Projects Commission of Ankara University [21B0237005, 19L0237004]

向作者/读者索取更多资源

In this study, an electrochemical sensor for the determination of the azo dye compound tartrazine (TRT) was developed. The sensor exhibited wide linear ranges, low detection limit, high selectivity, and superior recovery values, indicating great potential for monitoring TRT in food samples.
In this work, an electrochemical sensor for the azo dye compound tartrazine (TRT) determination was proposed. A screen-printed carbon electrode (SPCE) was modified by depositing three-dimensional porous reduced graphene oxide decorated with carbon quantum dots and platinum nanoparticles (Pt/CQDs@rGO/SPCE). The resulting amount of TRT was observed by differential pulse voltammetry. Under optimal conditions, the sensor exhibited two wide linearities ranging from 0.01 to 1.57 mu M and 1.57-9.3 mu M with the reliability coefficient of determination of 0.991 and 0.992, respectively. The detection limit (LOD) was also estimated to be 7.93 nM. Moreover, the Pt/CQDs@rGO/SPCE suggested high selectivity in the presence of several interfering agents and azo dye compounds that have a similar structure. Additionally, the Pt/CQDs@rGO/SPCE revealed superior recovery values of about 96.5-101.6% for candy, 99.7-103.5% for soft drinks, 96.0-101.2% for jelly powder, and 98.0-103.0% for water samples. Furthermore, the fabricated sensor exhibits excellent selectivity, stability, reproducibility, and repeatability, indicating a great perspective in the monitoring of TRT. Therefore, it can be speculated that the proposed electrode could be effectively applied to determine TRT in food samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据