4.7 Article

Yeast culture improved the growth performance, liver function, intestinal barrier and microbiota of juvenile largemouth bass (Micropterus salmoides) fed high-starch diet

期刊

FISH & SHELLFISH IMMUNOLOGY
卷 120, 期 -, 页码 706-715

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fsi.2021.12.034

关键词

High-starch diet; Non-target metabonomics; Antioxidant capacity; Intestinal microbiota; Micropterus salmoides

资金

  1. Chongqing Technology Innovation and Application Development Project [cstc2020jscx-msxmX0046]
  2. Chongqing Ecological Fishery Technology System, China
  3. Special Fund for Beijing Enhalor Bio-Tech Co., Ltd.

向作者/读者索取更多资源

The study found that supplementation of 3% yeast culture improved the growth performance and health of juvenile largemouth bass, leading to changes in liver metabolism and intestinal microbiota composition.
The present study was conducted to investigate the effects of yeast culture on the growth, health and microflora of the juvenile largemouth bass fed high-starch diet. The experiment set three isonitrogenous and isolipidic diets, control (high-starch diet), HSY1 (high-starch diet with 1% yeast culture) and HSY3 (high-starch diet with 3% yeast culture). A feeding trial was conducted in largemouth bass juveniles for 8 weeks. The results indicated fish fed with 3% yeast culture not only could improve specific growth rate (SGR), but also significantly decreased hepatic lipid content, hepatic glycogen content, and hepatopancreas somatic index (HSI) compared with the control group (p<0.05). The total superoxide dismutase (T-SOD) and catalase (CAT) activities of HSY3 group significantly increased while malondialdehyde (MDA) content significantly reduced in liver compared with the control group (p<0.05). Meanwhile, the mRNA expression levels of hepatic Sod and Cat were up-regulated (p<0.05), and liver metabolism showed 111 metabolites were significantly changed in HSY3 group, liver lipid metabolism pathway remarkably changed. Besides, the intestinal anti-inflammatory cytokines were significantly up-regulated, and the pro-inflammatory cytokines were significantly down-regulated as the inclusion of yeast culture (p<0.05). Notably, HSY3 group diet up-regulated the expression of Zo-1, Claudin and Occludin in intestine compared with the other groups (p<0.05). Serum D-lactate (D-lac), diamine oxidase (DAO) and lipopolysaccharide (LPS) decreased significantly with the inclusion of yeast culture (p<0.05). Furthermore, the abundance of probiotics (such as Lactobacillus, Bacillus and Bifidobacterium) increased significantly, and the abundance of intestinal potential pathogenic bacteria (Plesiomonas) decreased in HSY3 group (p<0.05). The phenotypic analysis showed that gram-negative bacteria significantly decreased while gram-positive bacteria increased in HSY3 group (p<0.05). All in all, this study revealed that supplementation of 3% yeast culture can improve the growth performance and the health of juvenile largemouth bass, and has the potential to be used as an effective synbiotics for M. salmoides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据