4.7 Article

A novel representation in genetic programming for ensemble classification of human motions based on inertial signals

期刊

EXPERT SYSTEMS WITH APPLICATIONS
卷 185, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2021.115624

关键词

Motions detection; Inertial signals; Ensemble learning; Genetic programming; Scalability

向作者/读者索取更多资源

The manuscript introduces a novel method for human motion detection based on inertial sensors and a new ensemble learning approach through genetic programing. The method utilizes spatial information of human motion for feature extraction and enhances classifier optimization through genetic programing.
The use of sensing technologies and novel computational methods for automated motion detection can play a major role in improving the quality of life. Recently, researchers have become interested in employing the inertial sensor technology to record human motion signals as well as the new machine learning methods for signalbased motion detection. This manuscript proposes a novel method for human motion detection based on inertial sensors. The spatial information of a motion is first used in this method for geometric feature extraction. This manuscript also aims to introduce a novel ensemble learning approach through the genetic programing paradigm. To reduce the general complexity in the process of designing the proposed classifier, an initial population of binary trees (genes) is first created and then enhanced through genetic programing to select the best classifier. A complete experiment was conducted to evaluate the proposed ensemble classifier for the classification of inertial signals of human motions. According to the experimental results based on several well-known datasets of inertial signals, the proposed approach performed appropriately in comparison with the existing methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据