4.7 Article

A novel hybrid differential evolution and symbiotic organisms search algorithm for size and shape optimization of truss structures under multiple frequency constraints

期刊

EXPERT SYSTEMS WITH APPLICATIONS
卷 184, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2021.115534

关键词

Differential evolution (DE); Symbiotic organisms search (SOS); Hybrid differential evolution and symbiotic; organisms search algorithm (HDS); Shape and size optimization; Truss

向作者/读者索取更多资源

This article proposes a novel optimization algorithm, named HDS, which combines DE and SOS for size and shape optimization of truss structures. The algorithm can enhance both global and local searching abilities effectively, achieve a better trade-off with an automatically adapted parameter, and utilize an elitist scheme for selecting the best solutions.
Although a large number of metaheuristic algorithms and their variants have been proposed for many engineering optimization problems, no paradigms hybridized by differential evolution (DE) and symbiotic organisms search (SOS) to concurrently improve the optimal solution quality and the convergence speed have been published thus far, especially for size and shape optimization of truss structures with multiple frequency constraints. Therefore, this article aims to propose a novel optimization algorithm as a cross-breed of the DE and the SOS, named HDS, for such problems. This algorithm can simultaneously and effectively enhance both global and local searching abilities by utilizing newly developed operators hybridized from the DE and SOS. An automatically adapted parameter is suggested for a better trade-off between those two capabilities. Furthermore, an elitist scheme is used in the selection phase to extract the best solutions for the next generation. As a consequence, the proposed methodology results in high-quality optimal solutions with a lower computational effort in comparison with two original methods, even many other optimization paradigms available in the literature. 26 benchmark mathematical functions are examined first. 5 numerical examples of shape and size optimization of truss structures are then investigated to validate the feasibility of the current paradigm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据