4.7 Article

Identifying vital nodes from local and global perspectives in complex networks

期刊

EXPERT SYSTEMS WITH APPLICATIONS
卷 186, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2021.115778

关键词

Vital nodes; Global and local information; Complex networks

资金

  1. National Key Research and Develop-ment Program of China [2018YFB1003602]

向作者/读者索取更多资源

Recognition of vital nodes in complex networks is crucial for improving network robustness and vulnerability. Existing methods have limitations, leading to the proposal of a Local-and-Global Centrality (LGC) algorithm to address both local and global aspects of network topology simultaneously. Experiments show that LGC outperforms many state-of-the-art techniques in identifying vital nodes.
Recognition of vital nodes in complex networks retains great importance in the improvement of network's robustness and vulnerability. Consistent research proposed various approaches like local-structure-based methods, e.g., degree centrality, pagerank, etc., and global-structure-based methods, e.g., betweenness, closeness centrality, etc., to evaluate the concerned nodes. Though their performance is amazingly well, these methods have undergone some intrinsic limitations. For instance, local-structure-based methods lose some sort of global information and global-structure-based methods are too complicated to measure the important nodes, particularly in networks where sizes become large. To tackle these challenges, we propose a Local-and-Global Centrality (LGC) measuring algorithm to identify the vital nodes through handling local as well as global topological aspects of a network simultaneously. In order to assess the performance of the proposed algorithm with respect to the state-of-the-art methodologies, we performed experiments through LCG, Betweenness (BNC), Closeness (CNC), Gravity (GIC), Page-Rank (PRC), Eigenvector (EVC), Global and Local Structure (GLS), Global Structure Model (GSM), and Profit-leader (PLC) methods on differently sized real-world networks. Our experiments disclose that LGC outperformed many of the compared techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据