4.8 Article

Performance Comparison of Doubly Salient Reluctance Machine Topologies Supplied by Sinewave Currents

期刊

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
卷 63, 期 7, 页码 4086-4096

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2016.2544722

关键词

Double/single layer; fully/short-pitched; mutually coupled; switched/synchronous reluctance machine (SynRM)

向作者/读者索取更多资源

This paper comprehensively investigates the electromagnetic performance of 3-phase, 12-slot, and 8-pole switched reluctance machines (SRMs) with different winding configurations, i.e., double/single layer, short pitched (concentrated), and fully pitched (distributed). These SRMs are supplied by sinewave currents so that a conventional three-phase converter can be employed, leading to behavior which is akin to that of synchronous reluctance-type machines. Comparisons in terms of static and dynamic performances such as d-and q-axis inductances, on-load torque, torque-speed curve, and efficiency map have been carried out using two-dimensional finite-element method (2-D FEM). It is demonstrated for the given size of machine considered that for same copper loss and without heavy magnetic saturation, both single-and double-layer mutually coupled SRMs (MCSRMs) can produce higher on-load torque compared to conventional SRMs (CSRMs). Additionally, double-layer MCSRM achieved the highest efficiency compared to other counterparts. When it comes to single-layer SRMs, they are more suitable for middle-speed applications and capable of producing higher average torque while lower torque ripple than their double-layer counterparts at low phase current. Two prototype SRMs, both single layer and double layer, are built to validate the predictions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据