4.7 Article

Effect of using limestone fines on the chemical shrinkage of pastes and mortars

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 30, 期 10, 页码 25287-25298

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-022-18496-5

关键词

Limestone fines; Chemical shrinkage; UPV; Density; Compressive strength; Pastes; Mortars

向作者/读者索取更多资源

The aim of this study is to investigate the effect of incorporating limestone fine (LF) on the chemical shrinkage of pastes and mortars. The results showed that the long-term chemical shrinkage of pastes increased with the increase in LF content up to 15%, while the chemical shrinkage of mortars decreased beyond a certain LF content. Additionally, the compressive strength of pastes and mortars reached the highest value for mixes containing 10% and 15% LF.
The main aim of this study is to examine the effect of incorporating limestone fine (LF) on chemical shrinkage of pastes and mortars. For this purpose, five paste and five mortar mixes were prepared with 0, 5, 10, 15, and 20% (by weight) LF as a replacement of cement. The water-to-binder (w/b) ratio was 0.45 for all mixes. The sand-to-binder (s/b) ratio in the mortar mixes was 2. Testing included chemical shrinkage, compressive strength, density, and ultrasonic pulse velocity (UPV). Chemical shrinkage was tested each hour for the first 24 h, and thereafter each 2 days until a total period of 90 days. Furthermore, compressive strength and UPV tests were conducted at 1 day, 7, 28, and 90 days of curing. The results show that the long-term chemical shrinkage of pastes was found to increase with the increase in LF content up to 15%. Beyond this level of replacement, the chemical shrinkage started to decrease. However, the chemical shrinkage for mortars increased with the increase in LF content up to 10% LF and a decrease was observed beyond this level. It was also noticed that compressive strength for pastes and mortars attained the highest value for mixes containing 10 and 15% LF. The trend in the UPV results is somewhat similar to those of strength. Density for pastes and mortars increased up to 15% LF followed by a decrease at 20% replacement level. Correlations between the various properties were conducted. It was found that an increase in chemical shrinkage led to an increase in compressive strength.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据