4.8 Article

Plastic biodegradation: Do Galleria mellonella Larvae Bioassimilate Polyethylene? A Spectral Histology Approach Using Isotopic Labeling and Infrared Microspectroscopy

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 56, 期 1, 页码 525-534

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.1c03417

关键词

polyethylene; plastic degradation; biodegradation; Galleria mellonella larvae; FTIR microspectroscopy; isotopic labeling; hyperspectral imaging

资金

  1. DIM-ACAV from Region Ile de France

向作者/读者索取更多资源

The larvae of Greater Wax Moth, Galleria mellonella, can partially degrade polyethylene (PE) plastics but cannot fully metabolize them.
Environmental pollution by the nearly nonbiodegradable polyethylene (PE) plastics is of major concern; thus, organisms capable of biodegrading PE are required. The larvae of the Greater Wax Moth, Galleria mellonella (Gm), were identified as a potential candidate to digest PE. In this study, we tested whether PE was metabolized by Gm larvae and could be found in their tissues. We examined the implication of the larval gut microbiota by using conventional and axenic reared insects. First, our study showed that neither beeswax nor LDPE alone favor the growth of young larvae. We then used Fourier transform infrared microspectroscopy (mu FTIR) to detect deuterium in larvae fed with isotopically labeled food. Deuterated molecules were found in tissues of larvae fed with deuterium labeled oil for 24 and 72 h, proving that mu FTIR can detect metabolization of 1 to 2 mg of deuterated food. Then, Gm larvae were fed with deuterated PE (821 kDa). No bioassimilation was detected in the tissues of larvae that had ingested 1 to 5 mg of deuterated PE in 72 h or in 19 days, but micrometer sized PE particles were found in the larval digestive tract cavities. We evidenced weak biodegradation of 641 kDa PE films in contact for 24 h with the dissected gut of conventional larvae and in the PED4 particles from excreted larval frass. Our study confirms that Gm larvae can biodegrade HDPE but cannot necessarily metabolize it.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据