4.7 Article

Influences of climate fluctuations on northeastern North America's burned areas largely outweigh those of European settlement since AD 1850

期刊

ENVIRONMENTAL RESEARCH LETTERS
卷 16, 期 11, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1748-9326/ac2ce7

关键词

burnt areas; climate change; land-use; global change; fire history; environmental history

资金

  1. MITACS
  2. Rayonier Advanced Materials forest products company (La Sarre, QC)

向作者/读者索取更多资源

The study found that climate fluctuations had the most significant impact on forest burned areas, while the effects of Euro-Canadian settlement were relatively weak. In fire-prone climate conditions, burned areas were maximized regardless of fluctuations in the Euro-Canadian population.
There is a pressing need for a better understanding of changing forest fire regimes worldwide, especially to separate the relative effects of potential drivers that control burned areas. Here we present a meta-analysis of the impacts of climate fluctuation and Euro-Canadian settlement on burned areas from 1850 to 1990 in a large zone (>100 000 km(2)) in northern temperate and boreal forests of eastern Canada. Using Cox regression models, we tested for potential statistical relationships between historical burned areas in 12 large landscapes (reconstructed with dendrochronological data) with climate reconstructions, changes in the Euro-Canadian population, and active suppression (all reconstructed at the decadal scale). Our results revealed a dominant impact of climate fluctuations on forest burned areas, with the driest decades showing fire hazards between 5 to 15 times higher than the average decades. Comparatively, the Euro-Canadian settlement had a much weaker effect, having increased burned areas significantly only during less fire-prone climate conditions. During periods of fire-prone climate, burned areas were maximum independent of fluctuations in Euro-Canadian populations. Moreover, the development of active fire suppression did not appear to reduce burned areas. These results suggest that a potential increase in climate moisture deficit and drought may trigger unprecedented burned areas and extreme fire events no matter the effects of anthropogenic ignition or suppression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据