4.7 Article

Co-pyrolysis of corn stover with industrial coal ash for in situ efficient remediation of heavy metals in multi-polluted soil

期刊

ENVIRONMENTAL POLLUTION
卷 289, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2021.117840

关键词

Coal ash; Waste biomass; Polluted soil; Soil remediation; Paddy rice

资金

  1. Key Research Program of Chinese Academy of Science [ZDRW-ZS-2018-1-3]

向作者/读者索取更多资源

The immobilization efficiency of CA/BC for heavy metals was significantly enhanced due to increased pH value, surface functionality, and surface negative charge. The introduction of 5% CA/BC led to the highest reduction of leaching toxicity in polluted soils. The chemical speciation of Pb and Cd in soils changed remarkably, with bioavailable Pb and Cd mainly transformed into the most stable form of residual fraction.
Coal ash incorporated biochar (CA/BC) composite was prepared by co-pyrolysis of agricultural residue and in-dustrial coal ash and applied for remediation of soils polluted by lead (Pb) and cadmium (Cd). The results showed that immobilization efficiency of CA/BC for heavy metals (HMs) was significantly enhanced by 77.1 % (Pb) and 42.7 % (Cd) compared to pristine biochar (BC), and this was mainly due to the increased pH value, surface functionality and surface negative charge. By the introduction of 5 % CA/BC, the polluted soils showed the highest reduction of leaching toxicity by 67.9 % (Pb) and 49.7 % (Cd), respectively. The chemical speciation of Pb and Cd in soils was changed remarkably and the reduced bioavailable Pb and Cd were mainly transformed from acid-soluble fraction into the most stable form of residual fraction. The mechanism study showed that surface precipitation, complexation, cation exchange and cation-pi interaction of CA/BC mainly contributed to heavy metals (HMs) immobilization. The pot experiments further confirmed that incorporation of 5 % CA/BC effectively reduced plant Pb and Cd accumulation by 81 % and 62.5 % respectively, and significantly promoted the plant growth of paddy rice by 3.1, 2.2 and 2.0 times in terms of root, stem length and dry mass parameters. The present study offered a cost-effective and green method to prepare soil amendment with great potential for remediation of soils polluted by HMs and realized the value-added utilization of waste agricultural residue and industrial coal ash.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据