4.7 Article

Nitrate leaching and NH3 volatilization during soil reclamation in the Yellow River Delta, China

期刊

ENVIRONMENTAL POLLUTION
卷 286, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2021.117330

关键词

Yellow River Delta; NH3 volatilization; NO3- - N leaching; Hydros-2D

资金

  1. National Natural Science Foundation of China-Shandong Joint Fund [U1906221]
  2. National Natural Science Foundation of China [41977015]
  3. National Key Research and Development Programme of China [2016YFD0200303]

向作者/读者索取更多资源

Soil reclamation in the Yellow River Delta may lead to nitrogen losses, impacting the ecological system in the area.
The agricultural ecological system is an important part of the Yellow River Delta (YRD); however, soil reclamation may trigger environmental concerns about nitrate leaching and NH3 volatilization in this area. To assess nitrogen losses during soil reclamation, a two-year field experiment was conducted with plastic film mulch, which is an effective way to alleviate water-salt stress. The Hydrus-2D software package was used to calculate nitrogen transport, transformation and losses. The results showed that nitrogen (N) retention in the soil varied during the two growing seasons, because soil water, salinity and climatic conditions acted together on nitrogen transport and transformation. Soil salinity promoted NH3 volatilization, and the proportions of ammonia volatilization were 22.78 percent and 19.50 percent of the N input in 2018 and 2019, respectively, because urea hydrolysis, nitrification and soil NH4+ - N adsorption capacity were limited by soil salt. NO3- - N leaching was controlled by soil water infiltration, climatic conditions and groundwater level. NO3- N leaching was 43.84 percent and 32.89 percent of the nitrogen input in 2018 and 2019, respectively; the difference was mainly caused by the different distribution of rainfall during the growing season; thus, soil water infiltration increased under heavy rainfall because it broke the barrier formed by the plough pan. This study indicates that there is a risk of nitrogen pollution during soil reclamation. In addition, Hydrus-2D has considerable potential to calculate nitrogen losses under the effect of plastic film mulch in this area.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据