4.7 Article

Mechanistic insights into soil heavy metals desorption by biodegradable polyelectrolyte under electric field

期刊

ENVIRONMENTAL POLLUTION
卷 292, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2021.118277

关键词

Electrokinetic technology; Divalent heavy metals; Alginate; DFT

向作者/读者索取更多资源

Alginates were used to enhance electrokinetic technology to remediate soil contaminated with divalent heavy metals in this study. The results showed that alginate could increase soil conductivity and promote the removal efficiency of metal ions, particularly Cu and Zn. However, excessive alginate dosage may reduce metal removal efficiency. The migration of heavy metal ions in the electric field was influenced by the dosage of alginate.
In this study, we firstly used alginate to enhance an electrokinetic technology to remediate soil contaminated with divalent heavy metals (Pb2+, Cu2+, Zn2+). The mechanisms of alginate-associated migration of metal ions in electric field were confirmed. Alginate resulted in a high electrical current during electrokinetic process, and soil conductivity also increased after remediation. Obvious changes in both electroosmotic flow and soil pH were observed. Moreover, these factors were affected by increasing alginate dosage. The highest Cu (95.82%) and Zn (97.33%) removal efficiencies were obtained by introducing 1 wt% alginate. Alginate can desorb Cu2+ and Zn2+ ions from soil by forming unstable gels, which could be dissociated through electrolysis. However, Pb2+ ions did not easily migrate out of the contaminated soil. The density functional theory (DFT) calculations show Pb2+ ions could form a more stable coordination sphere in metal complexes than Cu2+ and Zn2+ ions. The metal removal efficiency was decreased by increasing alginate dosage at a high level. More alginate could provide more carboxyl ligands for divalent metal ions to stabilize gels, which were difficult to dissociate by electrolysis. In summary, the results indicate it is potential for introducing alginate into an electrokinetic system to remediate Cu- and Zn- contaminated soil.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据