4.8 Article

Type 2 diabetes attributable to PM2.5: A global burden study from 1990 to 2019

期刊

ENVIRONMENT INTERNATIONAL
卷 156, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2021.106725

关键词

Diabetes; PM2.5; Global burden; Socio-demographic indexes; Environmental

资金

  1. Fundamental Research Funds for the Central Universities, Lanzhou University, China [lzujbky2021ey07]
  2. Soft Science Special Project of Gansu Province [20CX4ZA028]

向作者/读者索取更多资源

According to the analysis of data from the GBD2019 database, the global burden of T2D attributed to PM2.5 has significantly increased from 1990 to 2019, particularly in the elderly, men, Africa, Asia, and low-middle SDI regions. However, declining trends were observed in regions with high SDI such as North America, South America, Europe, Australia, and others.
Background: Long-term exposure to fine particulate matter (PM2.5) is associated with an increased risk of type 2 diabetes (T2D). However, limited data on trends in the global burden of T2D attributed to PM2.5, particularly in different regions by social-economic levels. We evaluated the spatio-temporal changes in the disease burden of T2D attributed to PM2.5 from 1990 to 2019 in 204 countries and regions with different socio-demographic indexes (SDI). Methods: This is a retrospective analysis with data from the Global Burden of Disease Study 2019 (GBD2019) database. The burden of T2D attributed to PM2.5, age-standardized mortality rate (ASMR) and age-standardized disability-adjusted life year rate (ASDR) were estimated according to sex, age, nationality and SDI. The annual percentage change (APCs) and the average annual percentage change (AAPCs) were calculated by using the Joinpoint model to evaluate the changing trend of ASMR and ASDR attributed to PM2.5 from 1990 to 2019. The Gaussian process regression model was used to estimate the relationship of SDI with ASMR and ASDR. Results: Overall, the global burden of T2D attributable to PM2.5 increased significantly since 1990, particularly in the elderly, men, Africa, Asia and low-middle SDI regions. The ASMR and ASDR of T2D attributable to PM2.5 in 2019 were 2.47 (95% CI: 1.71, 3.24) per 100,000 population and 108.98 (95% CI: 74.06, 147.23) per 100,000 population, respectively. From 1990 to 2019, the global ASMR and ASDR of T2D attributed to T2D increased by 57.32% and 86.75%, respectively. The global AAPCs of ASMR and ASDR were 1.57 (95% CI: 1.46, 1.68) and 2.17 (95% CI: 2.02, 2.32), respectively. Declining trends were observed in North America, South America, Europe, Australia, and other regions with high SDI. Conclusions: Over this 30-years study, the global T2D burden attributable to PM2.5 has increased particularly in regions with low-middle SDI. PM2.5 remains a great concern on the global burden of diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据