4.7 Article

Classification of Polarimetric SAR Images Based on Modeling Contextual Information and Using Texture Features

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2015.2469691

关键词

Composite kernel; contextual image classification; Markov randomfield (MRF); polarimetric synthetic aperture radar (PolSAR); support vector machine (SVM); texture feature; Wishart distribution

向作者/读者索取更多资源

This paper proposes a novel contextual method for classification of polarimetric synthetic aperture radar data. The method combines support vector machine (SVM) and Wishart classifiers to benefit from both parametric and nonparametric methods. This method computes the energy function of a Markov random field (MRF) in the neighborhoods of the pixel using Wishart distribution. It then relates the Markovian energy-difference function to the SVM classifier. Therefore, the salt-and-pepper effect on the classified map is reduced using a contextual classifier. Moreover, to achieve the full advantage of spatial information, texture features are added into the contextual classification. Texture features are extracted from SPAN images and are added to the SVM classifier. In this paper, two Radarsat-2 polarimetric images acquired in the leaf-off and leaf-on seasons are used from a forest area. Efficient multitemporal information is exploited using composite kernels in SVM. Comparison of the proposed algorithm with the Wishart, Wishart-MRF, SVM, and SVM with composite kernel classifiers shows a 21.72%, 16.17%, 11.29%, and 8.19% improvement in overall accuracy, respectively. Moreover, incorporating texture features into classification results significant increase in the average accuracy in forest species compared with the use of only polarimetric features.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据