4.7 Article

An integrated UAV photogrammetry-discrete element investigation of jointed Triassic sandstone near Sydney, Australia

期刊

ENGINEERING GEOLOGY
卷 297, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.enggeo.2022.106517

关键词

UAV photogrammetry; Discontinuity mapping; Discrete element modelling

向作者/读者索取更多资源

In the past decade, UAV Structure-from-Motion photogrammetry and digital rock mass mapping tools have been widely used in geotechnical engineering. This study presents a case study that applies UAV photogrammetry mapping, discrete fracture network analysis, and discrete element method modeling to investigate rock mass geomechanical characteristics. The results demonstrate the effectiveness and accuracy of these digital mapping and numerical modeling approaches.
Over the last decade, UAV Structure-from-Motion photogrammetry and digital rock mass mapping tools have been rapidly adopted into geotechnical engineering practice. As computing power has increased, numerical models and remote sensing methods have become more sophisticated, and much research has been applied to the development of digital rock mass classification and data collection methods. This investigation presents a case study of UAV photogrammetry mapping, discrete fracture network analysis and discrete element method modelling of jointed sandstone exposed in coastal cliffs and wave-cut platforms near Sydney, Australia. The aim of the study is to investigate a selection of digital mapping and numerical modelling approaches for rock mass geomechanical characterisation. A cohesive workflow is presented for UAV photogrammetry survey, discontinuity mapping, simulation of rock mass scale laboratory tests, and 3D DFN simulations of roof reinforcement in a large-span road tunnel.Digital discontinuity mapping is undertaken using two different software tools, and results are compared with historical conventional mapping. A novel GIS-based workflow is demonstrated to interrogate the mapping data, using a cellular grid approach to measure fracture intensity and fracture network connectivity. The discontinuity statistics are used as inputs to a series of 3D discrete element method numerical UCS, triaxial, and biaxial load tests that investigate the rock mass anisotropy and the impact of confining stress on rock mass shear strength, stiffness, and failure mechanisms. Next, the mapping data are applied to DFN simulations of a 31 m span tunnel, based on upcoming proposed road tunnels in Sydney. The tunnel simulations show how predicted displacements in the tunnel roof are proportional to fracture intensity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据