4.7 Article

Numerical predictions of crack growth direction in a railhead under contact, bending and thermal loads

期刊

ENGINEERING FRACTURE MECHANICS
卷 261, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfracmech.2021.108218

关键词

Rolling contact fatigue; Crack growth direction; Crack propagation; Vector crack tip displacement

资金

  1. European Union [826255, 101012456]

向作者/读者索取更多资源

The study examines the influence of different operational loading scenarios on the predicted crack growth direction for a propagating inclined railhead crack through 2D finite element simulations. It is found that a combination of thermal and contact loads results in a gradual divergence of the crack path from transverse growth to shallow growth, while a combination of bending and contact loads causes a discrete jump in the crack direction.
The effect of different operational loading scenarios on predicted crack growth direction for a propagating inclined railhead crack is assessed by 2D finite element simulations. Studied load scenarios include a moving Hertzian contact load, a temperature drop, rail bending due to a passing wheelset, and combinations thereof. The direction of the unbiased crack propagation is predicted using an accumulative vector crack tip displacement criterion. The numerical model is validated for the individual load scenarios. Restraints due to crack face locking are imposed by a threshold parameter, whose influence is also assessed. For combinations of thermal and contact loads, the predicted crack path is found to diverge gradually from transverse growth, corresponding to pure thermal loading, to shallow growth, corresponding to a pure contact load. For combined bending and contact loading, there is a discrete jump in the predicted crack direction as the contact load increased while the bending load is kept constant. These results are well aligned with empirical experience.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据