4.7 Article

Co-gasification of woody biomass with organic and waste matrices in a down-draft gasifier: An experimental and modeling approach

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 245, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2021.114566

关键词

Biomass co-gasification; Organic waste disposal; Sewage sludge disposal; Gasification pseudo-kinetic model; Down-draft gasifier

向作者/读者索取更多资源

This study presented an extensive experimental campaign on the co-gasification of virgin wood biomass with organic and waste matrices in a full-scale downdraft air gasifier. The results showed that the gasifier maintained good gasification performance using different mixtures, with the potential to reach cold gasification efficiencies around 80% by adjusting secondary air flow and preheating of the gasifying air. The developed pseudo-kinetic model of the gasifier was able to accurately predict the gasifier performance and enhance syngas quality.
In this paper an extensive experimental campaign about the co-gasification of virgin wood biomass with organic and waste matrices in a full-scale downdraft air gasifier is presented. In particular, wastes from cherry processing, plastic wastes, sewage sludges and hazelnut shells were co-gasified with biomass adopting different mixtures. The syngas composition was continuously measured in order to assess the gasifier behaviour and performances using these mixtures. Results obtained mixing biomass with other feedstocks up to 60% (by mass) showed that the downdraft gasifier adopted, characterized by a patented internal air distribution system, was able to maintain a good gasification performance in terms of syngas lower heating value (LHV) (>5.18 MJ/Nm3), syngas flow rate (>400 Nm3/h) and cold gas efficiency (>71.9 %). A pseudo-kinetic model of the gasifier using Aspen Plus (R) code was developed as well. The model, calibrated with the experimental data, proved to fit the syngas composition and physical properties with satisfying accuracy. The numerical model confirmed its usefulness in predicting the performance of the gasifier as the operating parameters vary and clearly highlighted that secondary air flow and preheating of the gasifying air are effective ways for the enhancement of the cold gasification efficiency, which can reach values around 80%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据