4.7 Article

Inorganic phase change materials in thermal energy storage: A review on perspectives and technological advances in building applications

期刊

ENERGY AND BUILDINGS
卷 252, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2021.111443

关键词

Inorganic PCMs; Thermal energy storage; Corrosion; Building material; Salt hydrates; Latent heat

资金

  1. Czech Science Foundation in Czechia [GA 20-00630S]
  2. Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic [VEGA 1/0680/20]
  3. National Scholarship Program (NSP) of the Slovak Republic - Ministry of Education, Science, Research and Sport of the Slovak Republic

向作者/读者索取更多资源

The reutilization of thermal energy in buildings is crucial for low carbon/green campaigns. Phase change materials like iPCMs show great potential in enhancing energy efficiency, but face challenges such as supercooling and corrosion. Proposed solutions and further research are needed for their widespread application in building materials.
Reutilization of thermal energy according to building demands constitutes an important step in a low carbon/green campaign. Phase change materials (PCMs) can address these problems related to the energy and environment through thermal energy storage (TES), where they can considerably enhance energy efficiency and sustainability. Concrete researches focusing on building materials revealed a vast potential of inorganic PCMs (iPCMs) utilization in thermal energy management systems particularly in the building applications as per literature; however, large but scattered literature is available on this research dimension. The current study presents an up-to-date review on iPCMs in the context of latent TES in the building sector: summarizing its performance, applications, and key challenges. The thermal performance of iPCMs is based on the higher heat storage capacity per unit volume together with lower cost value in contrast to other latent heat-based materials. However, several crucial challenges associated with iPCMs i.e., supercooling, encapsulation, phase separation, and corrosion issues are identified and discussed, which marginalize its performance in the progressive building applications. Furthermore, different proposed solutions to mitigate these issues are also comprehensively discussed. Likewise, passive and active integrations of iPCMs are systematically analyzed with building materials such as concrete, composites and novel structures with progressive technologies, most commonly used in buildings. In view of the actual challenges to building implementation, though the valuable research data on iPCMs is available in the literature, there still exist inconsistencies in both their fundamental research and development aspects and further real-scale applications. Hence, the current review addresses the profound insight into future perspectives based on the pertinent data of recent technological advances in this field. (c) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据