4.7 Article

GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting

期刊

ENERGY
卷 238, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.122052

关键词

GRU; Deep learning; Electricity price forecasting; Time series features

向作者/读者索取更多资源

In this paper, a data-driven deep learning network (GHTnet) was proposed to predict real-time electricity prices, with significant performance improvements achieved through the introduction of a new CNN module and time series summary statistics.
A highly accurate electricity price prediction model is of the utmost importance for multiple power systems tasks, such as generation dispatch and bidding. Due to the liberalization of the electricity market, as well as high renewable penetration, the properties of electricity price time series are becoming more stochastic and complex. Traditional statistical methods and machine learning algorithms cannot model such volatile market conditions with high fidelity. In this paper, we propose a data-driven deep learning network (GHTnet) to capture the temporal distribution of real-time price data. A new CNN module, based on GoogLeNet, is developed to capture the high-frequency features of this data, while inclusion of time series summary statistics is shown to improve the forecasting of volatile price spikes. The deep learning model is developed and validated on real-time price time series from 49 generators in the New York Independent System Operator (NYISO), achieving significant performance improvements over that of state-of-the-art benchmark methods, with an average 17.34% improvement in MAPE. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据