4.7 Article

Designing framework of hybrid photovoltaic-biowaste energy system with hydrogen storage considering economic and technical indices using whale optimization algorithm

期刊

ENERGY
卷 238, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.121555

关键词

Hybrid PV-Biowaste-fuel cell system; Total net present cost; Reliability; Environmental pollution; Hydrogen storage; Whale optimization algorithm

资金

  1. Universiti Sains Malaysia (Post-Doctoral Fellowship Scheme)

向作者/读者索取更多资源

This study presents an economic, reliable, and environmentally friendly designing of a hybrid photovoltaic-biowaste-fuel cell system based on hydrogen storage energy using the whale optimization algorithm. The optimized system minimizes the total net present cost and ensures reliability with the utilization of all resources and a hydrogen storage system. The proposed method outperforms the particle swarm optimization method in achieving lower total net present cost and better reliability.
In this study economic, reliable and environmentally friendly designing of a hybrid photovoltaic-biowaste-fuel cell (PV-Biowaste-FC) system based on hydrogen storage energy is presented using whale optimization algorithm (WOA) considering the availability of components for 20 years useful lifespan of the project. The WOA is a robust meta-heuristic method for solving optimization problems with high convergence speed and accuracy. The fuel cell system includes an electrolyzer, a hydrogen storage tank, and a fuel cell stack. The objective function is defined as minimization of total net present cost (TNPC) include investment, maintenance and repair and replacement cost and reliability constraint is considered as loss of power supply probability (LPSP). The optimization variables include the area occupied by photovoltaic (PV) panels, number of biowaste units, electrolyzers, hydrogen storage tanks, fuel cells, and inverters that are optimally determined by the WOA considering the TNPC and LPSP. To validate the WOA method in the PV-Biowaste-FC designing, its performance is compared with the particle swarm optimization (PSO) method. Simulations have been carried out for different scenarios including designing of Biowaste-FC and PV-Biowaste-FC system, evaluating the effect of PV, Biowaste and inverter availability and also effect of investment cost of FC on the system designing. Simulation results show that the hybrid system with the participation of all resources and hydrogen storage system as the PV-Biowaste-FC presents the minimum TNPC (2.820 M$) and the lower LPSP (0.0029) compared to the other combinations. Also, the cost of energy (COE) value for the hybrid PV-Biowaste-FC system is ob-tained at 0.5238 $/kWh. The proposed method for designing the hybrid system provides better perfor-mance than the PSO in achieving less TNPC and better reliability with higher convergence speed and accuracy. Further, the effects of the availability of PV units, biowaste, and inverter on the system designing are evaluated. According to the results, decreasing the availability of the components increases the TNPC and weakens the reliability indices. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据