4.7 Article

Economic evaluation for four different solid sorbent processes with heat integration for energy-efficient CO2 capture based on PEI-silica sorbent

期刊

ENERGY
卷 238, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.121864

关键词

Techno-economic assessment; Internal heat integration; Adsorption-based CO2 capture

资金

  1. National Research Foundation of Korea (NRF) - Ministry of Science and ICT [2015M3D3A1A01064929]

向作者/读者索取更多资源

The study presents a techno-economic analysis of four different solid sorbent processes for post-combustion CO2 capture, showcasing the feasibility of achieving low CO2 capture costs through internal heat integration and enhanced CO2 cyclic capacity.
An amine-functionalized solid sorbent-based process with heat integration is considered an energy -efficient method for large-scale CO2 capture. Herein, we propose a techno-economic analysis (TEA) of four different solid sorbent processes for post-combustion CO2 capture with internal heat integration as an alternative to the conventional amine scrubbing process. Our proposed processes are fluidized bed adsorption, fixed bed adsorption, moving bed adsorption, and rapid thermal swing adsorption and involve continuous adsorption, heating, desorption, and cooling. In addition, the four processes use an amine-functionalized solid sorbent, SiO2/0.37 EB-PEI, which was transformed into powder, pellet, and hollow fiber to reflect the characteristics of each process. The proposed processes enable internal heat integration by recovering sensible heat from the cooling process and further enhance the CO2 cyclic capacity of amine-functionalized solid sorbents with high CO2 recovery by performing adsorption heat removal. Most importantly, our TEA based on rigorous mathematical modeling revealed that the CO2 capture cost of the four solid sorbent-based processes was approximately 48.1-75.2 $/t-CO2, with a 45%-58% sensible heat recovery. Such a low CO2 capture cost is comparable to that of the most mature amine-based absorption process (62.8 $/t-CO2), owing to a combination of internal heat integration and enhanced CO2 cyclic capacity. The results support the feasibility of four solid sorbent-based processes for post-combustion CO2 capture. (c) 2021 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据