4.7 Article

A flexible-reliable operation optimization model of the networked energy hubs with distributed generations, energy storage systems and demand response

期刊

ENERGY
卷 239, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.121923

关键词

Flexible-reliable operation; Flexibility sources; Hybrid evolutionary algorithm; Networked energy hub; Scenario-based stochastic programming

向作者/读者索取更多资源

This study presents a novel optimization model for the flexible-reliable operation of energy hubs in electricity, natural gas, and district heating networks, utilizing energy storage systems and incentive-based demand response program. The optimization scheme minimizes the total expected costs of operation, reliability, and flexibility of the energy networks, while considering uncertainties of load, energy cost, power generation of RES, and network equipment availability through scenario-based stochastic programming. A hybrid teaching-learning-based optimization and crow search algorithm is used to obtain a reliable optimal solution with low standard deviation.
This paper presents a novel optimization model for the flexible-reliable operation (FRO) of energy hubs (EHs) in electricity, natural gas, and district heating networks. To achieve flexible EH in the presence of renewable energy sources (RESs) and combined heat and power (CHP) system, energy storage systems (ESS) and incentive-based demand response program (IDRP) are used. The proposed problem minimizes the total expected costs of operation, reliability, and flexibility of the energy networks including EHs. The optimization scheme is constrained to the optimal power flow (OPF) equations and the reliability requirements of these networks and the EH model in the presence of sources and active loads, namely ESS and IDRP. Scenario-based stochastic programming (SBSP) is utilized to model uncertainties of load, energy cost, power generation of RES, and network equipment availability. The problem has a mixed integer nonlinear programming (MINLP) nature. Consequently, a hybrid teaching-learning-based optimization (TLBO) and crow search algorithm (CSA) is used to obtain a reliable optimal solution with a low standard deviation. Finally, by simulating the proposed scheme on a sample test system, the capabilities of this scheme in improving the reliability, operation, and flexibility of energy networks in accordance with the optimal scheduling for EHs are confirmed. (c) 2021 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据